Surgical Decompression for Painful Diabetic Neuropathy

Jonathan Isaacs, MD

Background-Diabetic Neuropathy

- Most common complication of DM
 - 10-90% of patients w/ DM
- Most common neuropathy (in developed countries)
 - 50-75% nontraumatic amputations
- Symmetrical, length-dependent sensorimotor polyneuropathy
 - Insidious, progressive, irreversible

Pathophysiology

- Excess glucose conversion → intracellular sorbitol
 - Sorbitol blocks uptake of myoinositol
 - Reduced sodium and potassium activity (affects conduction)
 - Increased intracellular sodium → demyelination
 - Attracts water molecules → swelling
 - Decreased axoplasmic flow → axonal degeneration
- End products interfere with nerve physiology on many levels
- Vascular
 - Less accepted than it used to be
 - Not from small or large vessel disease
 - Axonal swelling may cause compression
 - Analogous to nerve ischemia seen in other compressive neuropathies
 - Microvascular perfusion impaired from dyslipidemia, oxidative stress, premature atherosclerosis
 - Compression from nerve swelling
 - Diabetic neuropathy w/ superimposed compression neuropathy
- Double-crush hypothesis
 - Serial constraints on axoplasmic flow additive effect
 - Axoplasmic flow decreased in diabetic rats
 - Increased susceptibility to nerve compression (in a rat model)
 - Doesn’t behave like compression neuropathy
- Loss of small-fiber-mediated sensation → pain and temp
- Large-fiber → touch and vibration
 - Replaced with pain/ paresthesias
 - Neuropathic pain noted even if impaired glucose tolerance

*Pain reported in 30-40% of both Type I’s and II’s

Surgical Release Rationale

- Carpal Tunnel Syndrome → abnormally tight space damages normal median nerve
- Diabetic Neuropathy → normally tight spaces irritates damaged nerves

Natural “narrowing”
Known sites:
- Fibular neck
- Tarsal tunnel (distal medial plantar, lateral plantar, and calcaneal tunnels)
- Deep peroneal nerve on dorsum of foot

Increased water content \rightarrow swelling
Loss of tissue elasticity (from binding of glucose to collagen in epineurium)15
- Loss of gliding \rightarrow increased tension (dec in blood flow)

Animal Data
- Releasing tarsal tunnel in “streptozotocin-induced diabetic” rats blocked development of “abnormal” walking pattern16
- Diabetic Zucker rats demonstrated therapeutic benefit w/ decompression early in disease process17

Surgical Procedure18 - Release at fibular neck, tarsal tunnel, dorsum of foot

Clinical Experience
- Dellon et al.19
 - 57 lower ext diab nerve releases
 - Subjective improvement: good or excellent
 - Tibial: 85%
 - Common Peroneal: 72%
 - Deep Peroneal: 62%
 - Best predictor: strong Tinel’s at point of “narrowing”

- 26 patients20
 - Tarsal tunnel on 33 legs \rightarrow pain better in 92%; sensation better 76%
 - Two patients w/ neg Tinel Test with no improvement

- 36 patients21
 - 58 tibial nerve releases \rightarrow pain better in 86%; sensation better 60%

- 18 patients (15 w/ diab neur and 3 w/ idopathic neuropathy)15
 - Triple releases in 25 legs \rightarrow 88% pain relief

- 39 patients22
 - 49 limbs \rightarrow all with improvement in pain and sensation

- 100 patients (60 w/ diab neuropathy and 40 idiopathic)23
 - At 1 year f/u, 87% and 86% of patients with numbness and severe pain reported improvement

- 33 patients24
 - Triple release
 - Pain and sensory testing
 - 90% good to excellent pain relief (VAS improvement 6-10 points)
 - 67% good/exc sensation improvement
 - 40% return to normal sensation

Meta-analysis25
- 90% predictive value of positive Tinels
- Pain relief in 80% of patients VAS mean of 8.5 \rightarrow 2
- 80% gained $>$ protective sensation
References:

